题意:n个点,m条边,构建有权无向图。求出删去最少条边数没有最短路,以及删出最多条边,使最短路的长度不变。
思路:先处理出最短路,然后使用结果的dis数组,若dis[v]-dis[u] = w(u,v),则该路就是最短路经中的一条边。建出最短路径之后跑最大流,流量是有多少边权相同的重边,跑出来就是最小割,也就是阻断所有最短路的最小花费。最后再跑最短路,边权为1,跑出来的最短路dis[n],就是所需边最少的最短路。
补充:在优化理论中,最大流最小割定理指:在一个网络流中,能够从源点到达汇点的最大流量,等于,如果从网络中移除就能够导致网络流中断的边的集合的最小容量和。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PI;
typedef pair< PI, int> PII;
const double eps=1e-5;
const double pi=acos(-1.0);
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const int mx=1100;
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
const int MAXN = 2100+50;
const int MAXM = 60000*2+500;
struct Edge
{
int to,next,cap,flow;
} edge[MAXM];
int tol;
int head[MAXN];
int gap[MAXN],dep[MAXN],cur[MAXN];
void init()
{
tol = 0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int w,int rw = 0)
{
edge[tol].to = v;
edge[tol].cap = w;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = rw;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
int Q[MAXN];
void BFS(int start,int end)
{
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0] = 1;
int front = 0, rear = 0;
dep[end] = 0;
Q[rear++] = end;
while(front != rear)
{
int u = Q[front++];
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(dep[v] != -1)continue;
Q[rear++] = v;
dep[v] = dep[u] + 1;
gap[dep[v]]++;
}
}
}
int S[MAXN];
int sap(int start,int end,int N)
{
BFS(start,end);
memcpy(cur,head,sizeof(head));
int top = 0;
int u = start;
int ans = 0;
while(dep[start] < N)
{
if(u == end)
{
int Min = INF;
int inser;
for(int i = 0; i < top; i++)
if(Min > edge[S[i]].cap - edge[S[i]].flow)
{
Min = edge[S[i]].cap - edge[S[i]].flow;
inser = i;
}
for(int i = 0; i < top; i++)
{
edge[S[i]].flow += Min;
edge[S[i]^1].flow -= Min;
}
ans += Min;
top = inser;
u = edge[S[top]^1].to;
continue;
}
bool flag = false;
int v;
for(int i = cur[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
{
flag = true;
cur[u] = i;
break;
}
}
if(flag)
{
S[top++] = cur[u];
u = v;
continue;
}
int Min = N;
for(int i = head[u]; i != -1; i = edge[i].next)
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
{
Min = dep[edge[i].to];
cur[u] = i;
}
gap[dep[u]]--;
if(!gap[dep[u]])return ans;
dep[u] = Min + 1;
gap[dep[u]]++;
if(u != start)u = edge[S[--top]^1].to;
}
return ans;
}
bool vis[MAXN];
int pre[MAXN];
void Dijkstra(int cost[][MAXN],int lowcost[],int n,int beg)
{
for(int i=0; i<n; i++)
{
lowcost[i]=INF;
vis[i]=false;
pre[i]=-1;
}
lowcost[beg]=0;
for(int j=0; j<n; j++)
{
int k=-1;
int Min=INF;
for(int i=0; i<n; i++)
if(!vis[i]&&lowcost[i]<Min)
{
Min=lowcost[i];
k=i;
}
if(k==-1)break;
vis[k]=true;
for(int i=0; i<n; i++)
if(!vis[i]&&lowcost[k]+cost[k][i]<lowcost[i])
{
lowcost[i]=lowcost[k]+cost[k][i];
pre[i]=k;
}
}
}
int cost[MAXN][MAXN];
int dis[MAXN];
int num[MAXN][MAXN];
int cost2[MAXN][MAXN];
int dis2[MAXN];
void initia(int n)
{
init();
for(int i=0; i<=n; ++i)
{
for(int j=0; j<=n; ++j)
{
cost[i][j]=INF;
num[i][j]=0;
cost2[i][j]=INF;
}
cost[i][i]=0;
cost2[i][i]=0;
}
}
int main()
{
int n,m;
int u,v,w;
while(~scanf("%d%d",&n,&m))
{
initia(n);
for(int i=0; i<m; ++i)
{
scanf("%d%d%d",&u,&v,&w);
u--;
v--;
if(cost[u][v]>w)
{
cost[u][v]=w;
cost[v][u]=w;
num[u][v]=1;
num[v][u]=1;
}
else if(cost[u][v]==w)
{
num[u][v]++;
num[v][u]++;
}
}
Dijkstra(cost,dis,n,0);
for(int i=0; i<n; ++i)
{
for(int j=0; j<n; ++j)
{
if(i==j)
continue;
if(dis[j]-dis[i]==cost[i][j])
{
addedge(i,j,num[i][j]);
cost2[i][j]=1;
}
}
}
Dijkstra(cost2,dis2,n,0);
printf("%d %d\n",sap(0,n-1,n),m-dis2[n-1]);
}
return 0;
}
- 版权声明:本文基于《知识共享署名-相同方式共享 3.0 中国大陆许可协议》发布,转载请遵循本协议
- 文章链接:http://www.carlstedt.cn/archives/1049 (转载时请注明本文出处及文章链接)


发表评论
快来吐槽一下吧!